Design Methodology of a Power Split Type Plug-In Hybrid Electric Vehicle Considering Drivetrain Losses

نویسندگان

  • Hanho Son
  • Kyusik Park
  • Sungho Hwang
چکیده

Abstract: This paper proposes a design methodology for a power split type plug-in hybrid electric vehicle (PHEV) by considering drivetrain losses. Selecting the input split type PHEV with a single planetary gear as the reference topology, the locations of the engine, motor and generators (MGs), on the speed lever were determined by using the mechanical point considering the system efficiency. Based on the reference topology, feasible candidates were selected by considering the operation conditions of the engine, MG1, and a redundant element. To evaluate the fuel economy of the selected candidates, the loss models of the power electronic system and drivetrain components were obtained from the mathematical governing equation and the experimental results. Based on the component loss model, a comparative analysis was performed using a dynamic programming approach under the presence or absence of the drivetrain losses. It was found that the selection of the operating mode and the operation time of each mode vary since the drivetrain loss affects the system efficiency. In addition, even if the additional modes provide the flexibility of selecting the operating mode that results in a higher system efficiency for the given driving condition, additional drivetrain elements for realizing the modes can deteriorate the fuel economy due to their various losses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Near Optimal Rule-Based Control for Plug-In Hybrid Electric Vehicles Taking into Account Drivetrain Component Losses

Abstract: A near-optimal rule-based mode control (RBC) strategy was proposed for a target plug-in hybrid electric vehicle (PHEV) taking into account the drivetrain losses. Individual loss models were developed for drivetrain components including the gears, planetary gear (PG), bearings, and oil pump, based on experimental data and mathematical governing equations. Also, a loss model for the pow...

متن کامل

Multi-objective Optimization of Hybrid Electric Vehicle Equipped with Power-split Continuously Variable Transmission

This paper aims to find the efficient state of hybrid electric vehicle (HEV) by simultaneous optimization of the control strategy and the power train. The power transmission employed in this vehicle is a power-split continuously variable transmission (CVT) which uses several fixed ratio mechanisms. After describing this transmission, the rules of electric assist control strategy are introduced....

متن کامل

A Control Strategy for Mode Transition with Gear Shifting in a Plug-In Hybrid Electric Vehicle

The mode transition from electric propulsion mode to hybrid propulsion mode is important with regard to the power management strategy of plug-in hybrid electric vehicles (PHEVs). This is because mode transitions can occur frequently depending on the power management strategies and driving cycles, and because inadequate mode transitions worsen the fuel efficiency and drivability. A pre-transmiss...

متن کامل

Optimal Siting and Sizing of Hybrid Energy Systems (PV-WT-CHP) and Electric Vehicle Charging Stations Simultaneously based on Game Theory Approach

This paper proposes a methodology for practical siting and sizing of Hybrid energy systems (HESs) consist of: wind turbine (WT), photovoltaic (PV) and combined heat and power (CHP) units. In this method, the interaction of Plug-in Electric Vehicles (PIEVs) in the electric distribution system is considered. Electric Vehicle are seen to have some negative impacts on electric distribution system p...

متن کامل

Hierarchical Control Strategy of Heat and Power for Zero Energy Buildings including Hybrid Fuel Cell/Photovoltaic Power Sources and Plug-in Electric Vehicle

This paper presents a hierarchical control strategy for heat and electric power control of a building integrating hybrid renewable power sources including photovoltaic, fuel cell and battery energy storage with Plug-in Electric Vehicles (PEV) in smart distribution systems. Because of the controllability of fuel cell power, this power sources plays the main role for providing heat and electric p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017